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1 Relationship between ChIP and Input tag counts
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(a) ChIP vs. input (non-peaks)
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(b) ChIP vs. input (peaks).

Figure 1: Mean ChIP vs. input DNA tag counts. Data displayed are from non-peak
regions (Panel (a)) and peak regions (Panel (b)) of the STAT1 ChIP-Seq data and
its matching input DNA control.

2 Adaptive gridding for strata-specific estimation

of the non-enriched distribution

We implement an adaptive gridding scheme in Step 1(b) of our estimation procedure

to account for strata with too few bins. These strata may result in poor estimates

of ai and µi. The basic idea is to “rescue” these strata to improve the estimates

of β0, βM , βGC , and βX in Step 1(d). In general, adaptive gridding rescues more

points at boundaries of the M and GC ranges (small M values or small/large GC

values), hence, provides more stable fits for strata at the boundaries. For expository

purposes, we describe the adaptive gridding procedure for the one-sample model.

Extension to the two-sample model is straightforward. The candidate grid sizes are
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chosen to be 0.01, 0.02, 0.04, 0.10, 0.20, and 0.50 so that the grid size in the next

iteration is approximately twice as large as that of the current iteration.

Let C denote the set of candidate strata at a given iteration. When the grid size

is initialized at 0.01, C denotes all of the unique (M,GC) pairs, where M and GC

are rounded to the nearest hundredth. Let E denote the final set of strata that will

be utilized in Steps 1(d) and 1(e). Initially, set E is empty and all the strata are in

set C. Adaptive gridding is an iterative application of the following procedure for

grid sizes of 0.01, 0.02, 0.04, 0.10, 0.20, and 0.50:

1. For the current grid size, estimate ai and µi for all the strata with size, i.e.,

number of bins in the strata, greater than Nmin (50 for our case studies).

These strata are then removed from set C and become part of set E.

2. For the remaining strata in C, increase the grid size and redefine strata by

replacing the M and GC values of the bins within the strata by the median

M and GC values of the strata. For example, consider the bins with Mi1 ∈

(0.40, 0.42) and GCi2 ∈ (0.40, 0.42) as a result of increasing the grid size from

0.01 to 0.02. We reset their M and GC values as the median M and GC

values of the strata defined by the Mi1 ∈ (0.40, 0.42) and GCi2 ∈ (0.40, 0.42)

pair. These redefined strata are then used to estimate ai and µi.

3. Repeat the procedure until the grid size reaches 0.50. In the final iteration,

move all the remaining strata from set C to set E.

This procedure enables use of all the data and prevents strata from having too

few bins. Although it does not quarantee each final strata to have at least Nmin

bins, we observe this to be the case for the case studies presented in the paper.
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3 Simulation studies for evaluating the estima-

tion procedure of MOSAiCS

3.1 Evaluation of the estimation of the model parameters

In Section 3 of the main text, we proposed a computationally efficient estimation

procedure for fitting the MOSAiCS model. Given the volume of high throughput

sequencing data, computational speed is an important factor in developing meth-

ods. Here, we evaluate the performance of the proposed procedure with simulation

studies. Let Yj be the tag count for bin j and

P (Yj = y) = π0P (Nj = y) + (1− π0)P (Nj + Sj + k = y),

where Nj ∼ NegBin(a, a/µj), µj = exp(β0 + βM log2(Mj + 1) + βGCGCj), Sj ∼

NegBin(b, c) and k is a fixed constant. Here, we consider the simpler functional

form for the GC contribution; however, a smaller scale simulation study confirms

that similar conclusions hold for the actual functional form of GC in the MOSAiCS

model. In our modeling framework, we assume that 0, 1, and 2 counts are from

the background distribution which implies that k = 3. In our first simulation,

we generate β0 ∼ U(−4,−2), βM ∼ U(1, 3), βGC ∼ U(1, 3), π0 ∼ U(0.6, 0.99),

a ∼ U(1, 5), S ∼ U(5, 10), b ∼ U(0.2, 2), c = S/b. We use the mappability and

GC content from chromosome 18 of the dataset as our covariates, and compare

the β estimates from our procedure to the β estimates obtained from the glm.nb

function of the MASS library in R. This function fits a negative binomial family

generalized linear model using a maximum likelihood approach. We apply glm.nb

only to the subset of bins generated from the background distribution. However,

our proposed algorithm is applied to the whole data to obtain the parameters of
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both the background and enriched distribution simultaneously.

We let µ̂MOSAiCS
j = exp(β̂MOSAiCS

0 + β̂MOSAiCS
M log2(Mj + 1) + β̂MOSAiCS

GC GCj)

and µ̂glm
j = exp(β̂glm

0 + β̂glm
M log2(Mj + 1) + β̂glm

GC GCj) denote the fitted means from

MOSAiCS and glm.nb, respectively. Supplementary Figure 2 compares the mean

square error for MOSAiCS (
∑

j(µj − µ̂MOSAiCS
j )2/nsim) and glm.nb (

∑
j(µj −

µ̂glm
j )2/nsim), where nsim is the number of simulations. We further define an

analog of multiple r-squared value as in least squares regression: R2
MOSAiCS =

1−
∑

j(µj−µ̂MOSAiCS
j )2/

∑
j(µj−µ̄j)

2 and R2
glm = 1−

∑
j(µj−µ̂glm

j )2/
∑

j(µj−µ̄j)
2.

The results over 100 simulations are summarized in Supplementary Table 1. Both

the mean squared error and multiple r-squared comparisons of the two approaches

exhibit little difference between them. Although glm.nb has slightly lower mean

squared error than the estimation procedure of MOSAiCS, both mean squared er-

rors are on average smaller than 0.05. As emphasized above, the glm.nb is fitted

using the subset of true unbound bins, whereas MOSAiCS estimates the proportion

of unbound bins π0 and thus is expected to be less efficient. Despite this, MOSAiCS

estimation procedure generates estimators comparable to the maximum likelihood

estimators in glm.nb.

Table 1: Comparison of estimators of background model parameters by MOSAiCS
and glm.nb

MOSAiCS glm.nb

Sim 1:Median(R2)±mad(R2) 0.9872± 0.0079 0.9999± 0.000038

NOTE: Results are reported over 100 simulation replicates.

Next, we evaluate the performance of MOSAiCS in estimating π0, a, b and c.

Supplementary Figure 3 compares the estimates of these parameters to their true

values across 100 simulated datasets and provides strong support that the estimation

procedure of MOSAiCS works well.
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Figure 2: Mean squared error (log scale) comparison of MOSAiCS and glm.nb.

3.2 False discovery rate (FDR) under MOSAiCS

We evaluate the performance of MOSAiCS estimates in terms of the FDR control

of the model. The first simulation setting is the same as the previous section where

all the modelling assumptions of MOSAiCS are satisfied. For this evaluation, we

stratify the simulations in terms of the proportion of unbound bins π0 which is

equivalent to the proportion of null hypotheses. Supplementary Figure 4 depicts

empirical FDR from the MOSAiCS model against the nominal FDR and illustrates

that for a wide range π0 values, FDR is well controlled in the MOSAiCS model.

Next, we evaluate the consequences of violating the assumption that k = 3.

Specifically, we generate data from P (Yj = y|Zj = 1) = P (Nj + Sj + k = y) for

k = 0, (i.e., 0, 1 and 2 counts bins can be generated from the enriched distribution)

but enforce k = 3 during the estimation procedure. In Supplementary Figure 5, we

compare the empirical FDR fom the model against the nominal FDR for different

strata of π0. As expected, there is an underestimation of FDR in all cases. However,
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Figure 3: Performance of estimators of a, π0, b, and c. Open circles in panels (a)-(d)
denote estimators of a, π0, b, and c versus their true values in 100 simulations. In
panel (a), solid triangle compares the estimated a from glm.nb to its true value.
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Figure 4: Empirical versus nominal FDR for k = 3. Each panel compares the
empirical FDR against nominal FDR for different π0. Black solid line is the median
empirical FDR, whereas dotted lines are the first and third quartiles of empirical
FDRs over 100 simulations. The 45◦ line is depicted with a dashed gray line in each
panel.
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at π0 ∈ (0.9, 0.99), which is usually the case for transcription factor binding ChIP-

Seq data, the empirical FDR is only slightly underestimated. We check that this

range also covers binding of elonglation factors such as RNA Polymerase II based on

data Pol II binding ChIP-Seq data in unstimulated HeLa S3 cells (Rozowsky et al.,

2009). PeakSeq estimated π0 for Pol II is between 0.986 and 0.990 across different

chromosomes at FDR level of 0.05 both in one- or two-sample analysis using naked

DNA or input DNA control.
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Figure 5: Empirical vs. nominal FDR when k is misspecified as 0 in the data
generating mechanism. Each panel compares the empirical FDR against nominal
FDR under model misspecification of k for different π0. Black solid line is the
median empirical FDR, whereas dotted lines are the first and third quartiles of the
empirical FDR over 100 simulations.
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4 Mappability in PeakSeq

We investigate how PeakSeq utilizes mappability by a simple computational exper-

iment as follows. We create a pseudo mappability score for each chromosome by

fixing the mappability scores for each 1 Mb to be a constant value (third quartile of

the actual mappability scores for a chromosome). We run PeakSeq-1S twice (Run1

and Run2) with two different starting seeds for random permutation using the actual

mappability score, and once using the pseudo mappability score for Pol II ChIP-Seq

data (Rozowsky et al., 2009). In top panels of Supplementary Figure 6, we compare

the window specific thresholds to detect bound regions by using each of these scores

whereas in the bottom panels, we compare the number of peaks obtained by using

actual and pseudo mappability scores. As evident from these plots, the results in

PeakSeq-1S using either the actual or the pseudo mappability scores are very similar.

That is, although PeakSeq-1S aims to incorporate mappability bias, the simulation

based approach in PeakSeq-1S down-weighs the effect of mappability bias in a local

region of 1 Mb, i.e., the variability in mappability across segments of 1 Mb is almost

constant.

Supplementary Figure 7 compares the effect of mappability against the genomic

window size in Pol II ChIP-Seq data. These plots show that the effect of mappability

is only apparent using a shorter segment (e.g.,1 kb).
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Figure 6: Comparison of results in PeakSeq-1 using actual and pseudo mappability
(constant mappability across all the segments). Top panels compare thresholds
for detecting bound regions between analyses using actual and pseudo mappability
scores. Bottom panels compare the number of peaks obtained. Each data point
corresponds to a 1 Mb segment.
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Figure 7: Mappability against mean tag counts. Each panel plots the mappabil-
ity against average number of Eland tags for segments of length 1 kb to 1 Mb,
respectively.
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5 Choosing the s and d parameters of MOSAiCS

two-sample model

In the two-sample analysis of ChIP-Seq data, we model the background mean as

µj = exp
{
β0 +

[
βM log2(Mj + 1) + β′

GCSp(GCj) + βX1X
d
j

]
I(Xj ≤ s) + βX2X

d
j I(Xj > s)

}
,

where s and d are tuning parameters. We consider s ∈ {2, 3, 4, 5} and d ∈ {0, 15, 0.25, 0.3, 0.4, 0.5}.

Note that we do not consider larger s values since such values generate strata with

too few number of bins in the estimation procedure. Supplementary Figure 8 com-

pares the goodness of fit for STAT1 ChIP-Seq data for chromosome 1 (the other

chromosomes result in relatively similar patterns). Solid brown line in each panel is

the empirical distribution of the matching input DNA sample. The goal is to tune

s and d such that the estimated background is close to the empirical distribution of

matching input DNA sample. We choose s = 2 and d = 0.25 for STAT1 (s = 4 and

d = 0.25 for GATA1, plots not shown). In our software implementation, s and d

are set to default values from STAT1; however users can vary these parameters and

compare both the GOF plots and the BIC scores of the resulting models. Overall, s

is expected to be inversely related to the sequencing depth of the input control sam-

ple. When the sequencing depth of the input control sample is high, s is expected

to be small because mappability and GC content effects will be absorbed into input

counts.
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Figure 8: Tuning of s and d in the two-sample MOSAiCS model. Each panel plots
the goodness of fit for d = 0, 15, 0.25, 0.3, 0.4, 0.5 at a particular s value. Solid
purple line is the estimated background using only mappability and GC content
in one-sample problem. Solid brown line is the empirical distribution of matching
input DNA.
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6 Further results on STAT1 ChIP-Seq data

6.1 Comparison of methods on qPCR validated STAT1 tar-

get regions from Euskirchen et al. (2007)

We compare the overlap of the peak sets identified by each method with a gold-

standard set of 280 (120 positive, 160 negative) ChIP-chip target sites validated inde-

pendently by qPCR (Euskirchen et al., 2007) (http://encode.gersteinlab.org/data/Euskirchen etal/)

(PCR validated coordinates were lifted over from HG17 to HG18). The results on

top 10000 peaks are presented in Supplementary Table 2. We report the results

using both the original peak boundaries and also refining each peak boundry to be

2500 bp to account for the differences in peak sizes because many qPCR validated

targets are adjacent to each other giving an advantage to methods with wider peaks.

Among one-sample analyses, MOSAiCS-1S and PeakSeq-1S are comparable in terms

of their true positive and negative rates, whereas CisGenome-1S and MACS-1S have

lower true positive rates. CisGenome-2S performs slightly worse than the other two-

sample methods and MOSAiCS and PeakSeq capture the highest number of true

negatives in the one- and two-sample comparisons.

6.2 Comparison of one-sample methods when a two-sample

analysis with input DNA is used as the gold standard

We repeat the analysis presented in Table 3 of the main text by replacing naked

DNA with input DNA in the binomial test to obtain the gold-standard peak set.

The resulting bin level sensitivity and specificity, and peak level sensitivity of each

method are given in Supplementary Table 3. The relative performances of the differ-

ent methods are comparable to the results using naked DNA as the gold standard.
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Table 2: Comparisons of top 10000 peaks with the qPCR validated regions

Method TP TN Ave TP∗ TN∗ Ave∗

MOSAiCS-1S 69 (26) 156 0.775 73 156 0.792
PeakSeq-1S 68 (25) 156 0.771 70 155 0.776

CisGenome-1S 39 (22) 158 0.656 64 155 0.751
MACS-1S 49 (22) 154 0.685 52 152 0.692

MOSAiCS-2S 64 (23) 158 0.760 71 156 0.783
PeakSeq-2S 70 (26) 157 0.782 73 155 0.789

CisGenome-2S 35 (20) 158 0.640 64 153 0.745
MACS-2S 79 (26) 154 0.810 73 153 0.782

NOTE: TP: True Positive, TN: True Negative. Numbers in parentheses under the
column TP refers to numbers of unique peaks that overlap with the qPCR positive
regions. “Ave” is computed by [ (TP/120) + (TN/160)]/2. ∗ Denotes calculations
based on refining each peak to be of size 2500 bp. Each peak is resized by using
both the start and the end position of the peak as the anchor and the best result
is reported. Ranking of the methods remains robust to changing peak widths to
smaller sizes.

Two-sample analysis with input DNA as the gold standard yields a smaller set

gold standard peak set and, therefore, the sensitivities of all the methods increase,

whereas the specificities of all the methods except CisGenome decrease.

6.3 FIMO analysis for comparing PeakSeq and MOSAiCS-

2S (Input + M + GC)

We scanned the ranked peaks of PeakSeq-2S and MOSAiCS-2S (Input + M + GC)

with the two available STAT1 position weight matrices from the JASPAR database

(Portales-Casamar et al., 2010). Scoring on each peak set was conducted with the

FIMO tool of the MEME suite (Bailey and Elkan, 1994; Bailey et al., 2009). FIMO

evaluates the significance of each subsequence in a given dataset by comparing the

likelihoods of the subsequence under the motif position weight matrix (PWM) model

and a background model. For each peak set, we allowed the background model to be
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Table 3: Bin and peak level sensitivity and specificity for one-sample analysis of
STAT1 ChIP-Seq data

STAT1 ChIP MOSAiCS-1S CS-1S MACS-1S(1) MACS-1S(2) PS-1S
Sensitivity (peak) 0.994 0.608 0.866 0.875 0.999
Sensitivity (bin) 0.994 0.363 0.882 0.863 0.998
Specificity (bin) 0.985 0.999 0.981 0.957 0.984

NOTE: Sensitivity and specificity of different methods for one-sample analysis of
STAT1 ChIP-Seq data are reported by assuming bound regions from a two-sample
comparison with input DNA to be the gold-standard set. MACS-1S(1) and MACS-
1S(2) correspond to two different thresholds of p-value = 10−5 and p-value = 10−2,
respectively. CS-1S and PS-1S refer to CisGenome-1S and PeakSeq-1S, respectively.

estimated from the sequences of all the peaks. The differences in peak lengths were

taken into account by controlling peak level FDR at 0.1. The following multiple

hypotheses testing framework was utilized for the FDR control. Let the motif width

be w. For a peak of length L (L ≥ w), there are 2(L−w+1) subsequences of length

w. The factor 2 accounts for the reverse complement. A p-value for each of the

2(L − w + 1) subsequences is computed with the FIMO tool. The overall p-value

for the peak is then adjusted using the Benjamini-Hochberg FDR control method

(Benjamini and Hochberg, 1995) by taking into account a total of 2(L−w+1) tests.

7 Further results on GATA1 ChIP-Seq data

7.1 Mappability and GC content biases

See Supplementary Figure 9.

7.2 Model selection

See Supplementary Table 4.
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Figure 9: Mappability and GC content biases in the GATA1 ChIP-Seq sample. Left
and right panels plot mean ChIP tag counts against the mappability score Mj and
GC content GCj.

Table 4: Model selection based on BIC scores for the GATA1 ChIP sample

MOSAiCS 1S (1 NB) 1S (2 NB) 2S (Input Only) 2S (Input+M+GC)
BIC 3653449 3655712 3814563 3588403

NOTE: Each cell reports BIC score for one-sample (1S) and two-sample (2S) MO-
SAiCS.

18



7.3 Motif analysis

A recent study on GATA1 (Zhang et al., 2009) showed that the consensus sequence

[A/T]GATA[A/G] is necessary for GATA1 binding but its occurrence alone does not

guarantee binding of GATA1. Specifically, while more than 90% of GATA1-bound

regions contain this motif, less than 1% of regions that contain the motif are actually

bound by GATA1. Zhang et al. (2009) further showed that multiple occurrences

of the consensus sequence [A/T]GATA[A/G] strongly discriminate GATA1-bound

regions from the unbound regions with the consensus sequence, i.e., the average

number of occurrences of the [A/T]GATA[A/G] motif is about 2.3 in bound regions,

compared to 1.1 in the unbound regions. Supplementary Figure 10 compares the

different methods by scanning ranked peaks for one or more [A/T]GATA[A/G] motif

occurrences. Consistent with the findings of Zhang et al. (2009), scanning for ≥ 1

motif occurrences is unable to discriminate the top ranking peaks from peaks in

lower ranks. On the other hand, scanning for ≥ 2 motif occurrences is associated

with the binding specificity of GATA1 (Figure 7(c) of the main text).

8 A generalized E-M algorithm when the signal

component is a mixture of two negative bino-

mial random variables

These derivations closely follow the derivations of the simpler model when the signal

component is characterized by a single negative binomial distribution (Step 3(a)).

We have Yj|Zj = 1 ∼ p1(Nj+S1j)+(1−p1)(Nj+S2j)+k and S1j ∼ NegBin(b1, c1),

S2j ∼ NegBin(b2, c2). We introduce the latent variable Gj such that Yj|Zj = 1 ∼

Nj + S1j + k if Gj = 1 and Yj|Zj = 1 ∼ Nj + S2j + k if Gj = 2.
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Figure 10: Scanning of one or more GATA1 consensus binding sequence occurrences
in the top 3000 peaks.

The expected complete data likelihood is given by

T∑
j=1

{I(Zj = 0)[log π0 + logP (Yj|Zj = 0)]

+I(Zj = 1, Gj = 1)[log(1− π0) + log p1 + logP (Yj|Zj = 1, Gj = 1)]

+ I(Zj = 1, Gj = 2)[log(1− π0) + log(1− p1) + logP (Yj|Zj = 1, Gj = 2)]} .

Then, the expected complete data likelihood is

Q =
T∑

j=1

{P (Zj = 0|Yj)[log π0 + logP (Yj|Zj = 0)]

+P (Zj = 1, Gj = 1|Yj)[log(1− π0) + log p1 + logP (Yj|Zj = 1, Gj = 1)]

+ P (Zj = 1, Gj = 2|Yj)[log(1− π0) + log(1− p1) + logP (Yj|Zj = 1, Gj = 2)].
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The E- and M-steps for iteration t follow as:

E-step:

g
(t)
j = P (Gj = 1|Zj = 1, Yj = y)

=
p
(t−1)
1 P (Yj = y|Zj = 1, Gj = 1)

p
(t−1)
1 P (Yj = y|Zj = 1, Gj = 1) + (1− p

(t−1)
1 )P (Yj = y|Zj = 1, Gj = 2)

=
p
(t−1)
1 P (Nj = y|Zj = 1, Gj = 1)

p
(t−1)
1 P (Nj + S1j + k = y) + (1− p

(t−1)
1 )P (Nj + S2j + k = y)

,

z
(t)
j = P (Zj = 1|Yj = y)

=
(1− π0)[p

(t−1)
1 P (Nj + S1j + k = y) + (1− p

(t−1)
1 )P (Nj + S2j + k = y)]

π0P (Nj = y) + (1− π0)[p
(t−1)
1 P (Nj + S1j + k = y) + (1− p

(t−1)
1 )P (Nj + S2j + k = y)]

.

M-step:

∂Q

∂p1
=

∑T
j=1 P (Zj = 1, Gj = 1|Yj)

p1
−

∑T
j=1 P (Zj = 1, Gj = 2|Yj)

1− p1
= 0

⇒ p
(t)
1 =

∑T
j=1 P (Zj = 1, Gj = 1|Yj)∑T

j=1 P (Zj = 1, Gj = 1|Yj) + P (Zj = 1, Gj = 2|Yj)

=

∑T
j=1 g

(t)
j z

(t)
j∑T

j=1 z
(t)
j

.

Similar to step 3(a) in the manuscript, we update b1, c1, b2 and c2 by method of

moments as follows:

c
(t)
1 =

E(Yj|Zj = 1, Gj = 1)− E(Nj)− k

V ar(Yj|Zj = 1, Gj = 1)− V ar(Nj)− E(Yj|Zj = 1, Gj = 1) + E(Nj) + k
,

b
(t)
1 =

[E(Yj|Zj = 1, Gj = 1)− E(Nj)− k]2

V ar(Yj|Zj = 1, Gj = 1)− V ar(Nj)− E(Yj|Zj = 1, Gj = 1) + E(Nj) + k
,

c
(t)
2 =

E(Yj|Zj = 1, Gj = 2)− E(Nj)− k

V ar(Yj|Zj = 1, Gj = 2)− V ar(Nj)− E(Yj|Zj = 1, Gj = 2) + E(Nj) + k
,
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b
(t)
2 =

[E(Yj|Zj = 1, Gj = 2)− E(Nj)− k]2

V ar(Yj|Zj = 1, Gj = 2)− V ar(Nj)− E(Yj|Zj = 1, Gj = 2) + E(Nj) + k
,

where

E(Yj|Zj = 1, Gj = 1) =

∑T
j=1 z

(t)
j g

(t)
j Yj∑T

j=1 z
(t)
j g

(t)
j

,

V ar(Yj|Zj = 1, Gj = 1) =

∑T
j=1 z

(t)
j g

(t)
j [Yj − E(Yj|Zj = 1, Gj = 1)]2∑T

j=1 z
(t)
j g

(t)
j

,

E(Yj|Zj = 1, Gj = 2) =

∑T
j=1 z

(t)
j (1− g

(t)
j )Yj∑T

j=1 z
(t)
j (1− g

(t)
j )

,

V ar(Yj|Zj = 1, Gj = 2) =

∑T
j=1 z

(t)
j (1− g

(t)
j )[Yj − E(Yj|Zj = 1, Gj = 2)]2∑T

j=1 z
(t)
j (1− g

(t)
j )

.

9 Derivation of the full E-M algorithm

We provide the derivation of the E-M algorithm for our proposed model without

making any simplifying assumptions to speed up the computations. However, as

pointed out in Section 3 of the main text, the enriched distribution in MOSAiCS

is a convolution of negative binomials involving the non-enriched distribution. This

makes implementation of the full E-M algorithm highly unappealing since the M-step

would have to rely on numerical optimization. Therefore, our software implements

the procedure proposed in the main text.

1. Model 1: Yj|Zj = 1 ∼ Nj + Sj

(a) Consider Model 1: Yj|Zj = 0 ∼ Nj and Yj|Zj = 1 ∼ Nj + Sj for j =

1, · · · , T , where Nj ∼ NegBin(a, a/µj), µj = exp(β0 + f(Mj, GCj, Xj |

βM ,βGC ,βX)), and Sj ∼ NegBin(b, c).
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The complete data likelihood is given by

L =
T∏

j=1

[π0P (Yj|Zj = 0)]I(Zj=0) [(1− π0)P (Yj|Zj = 1)]I(Zj=1),

logL =
∑T

j=1
[I (Zj = 0) {log π0 + logP (Yj|Zj = 0)}

+I (Zj = 1) {log (1− π0) + logP (Yj|Zj = 1)}].

Then, the expected complete data likelihood is given by

Q =
∑T

j=1
[P (Zj = 0|Yj) {log π0 + logP (Yj|Zj = 0)}

+P (Zj = 1|Yj) {log (1− π0) + logP (Yj|Zj = 1)}].

(b) E-step:

z
(t)
j = P (Zj = 1|Yj = y)

=
P (Zj = 1)P (Yj|Zj = 1)

P (Zj = 0)P (Yj = y|Zj = 0) + P (Zj = 1)P (Yj = y|Zj = 1)

=
(1− π

(t−1)
0 )P (Nj + Sj = y)

π
(t−1)
0 P (Nj = y) + (1− π

(t−1)
0 )P (Nj + Sj = y)

.

(c) M-step:

∂Q

∂π0

=

∑T
j=1 P (Zj = 0|Yj)

π0

−
∑T

j=1 P (Zj = 1|Yj)

1− π0

= 0
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⇒ π
(t)
0 =

∑T
j=1 P (Zj = 0|Yj)∑T

j=1 P (Zj = 0|Yj) +
∑T

j=1 P (Zj = 1|Yj)

=

∑T
j=1 (1− z

(t)
j )

T
.

Since we do not have close form solutions for a, β0, βM , βGC , βX , b, c,

we can estimate them by numerical maximization of the Q function by

using, for example, R optimization function optim().

2. Model 2: Yj|Zj = 1 ∼ p1(Nj + S1j) + (1− p1)(Nj + S2j)

(a) Now consider Model 2: Yj|Zj = 0 ∼ Nj and Yj|Zj = 1 ∼ p1(Nj +

S1j) + (1− p1)(Ni + S2j) for j = 1, · · · , T , where Nj ∼ NegBin(a, a/µj),

µi = exp(β0 + f(Mj, GCj, Xj | βM ,βGC ,βX)), S1j ∼ NegBin(b1, c1),

and S2j ∼ NegBin(b2, c2). We introduce the latent variable Gj such that

Yj|Zj = 1 ∼ Nj + S1j if Gj = 1 and Yj|Zj = 1 ∼ Nj + S2j if Gj = 2.

The complete data likelihood is given by

L =
T∏

j=1

[π0P (Yj|Zj = 0)]I(Zj=0)

[(1− π0) p1P (Yj|Zj = 1, Gj = 1)]I(Zj=1,Gj=1)

[(1− π0) (1− p1)P (Yj|Zj = 1, Gj = 2)]I(Zj=1,Gj=2) ,

logL =
∑T

j=1
[I (Zj = 0) {log π0 + logP (Yj|Zj = 0)}

+I (Zj = 1, Gj = 1) {log (1− π0) + log p1 + logP (Yj|Zj = 1, Gj = 1)}

+I (Zj = 1, Gj = 2) {log (1− π0) + log (1− p1) + logP (Yj|Zj = 1, Gj = 2)}].
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Then, the expected complete data likelihood equals

Q =
∑T

j=1
[P (Zj = 0|Yj) {log π0 + logP (Yj|Zj = 0)}

+P (Zj = 1, Gj = 1|Yj) {log (1− π0) + log p1 + logP (Yj|Zj = 1, Gj = 1)}

+P (Zj = 1, Gj = 2|Yj) {log (1− π0) + log (1− p1) + logP (Yj|Zj = 1, Gj = 2)}].

(b) E-step:

g
(t)
j = P (Gj = 1|Zj = 1, Yj = y)

=
p
(t−1)
1 P (Yj = y|Zj = 1, Gj = 1)

p
(t−1)
1 P (Yj = y|Zj = 1, Gj = 1) + (1− p

(t−1)
1 )P (Yj = y|Zj = 1, Gj = 2)

=
p
(t−1)
1 P (Nj + S1j = y)

p
(t−1)
1 P (Nj + S1j = y) + (1− p

(t−1)
1 )P (Nj + S2j = y)

,

z
(t)
j = P (Zj = 1|Yj)

=
(1− π

(t−1)
0 )[p

(t−1)
1 P (Nj + S1j = y) + (1− p

(t−1)
1 )P (Nj + S2j = y)]

π
(t−1)
0 P (Nj = y) + (1− π

(t−1)
0 )[p

(t−1)
1 P (Nj + S1j = y) + (1− p

(t−1)
1 )P (Nj + S2j = y)]

.

(c) M-step:

∂Q

∂π0

=

∑T
j=1 P (Zj = 0|Yj)

π0

−
∑T

j=1 P (Zj = 1|Yj)

1− π0

= 0

⇒ π
(t)
0 =

∑T
j=1 P (Zj = 0|Yj)∑T

j=1 P (Zj = 0|Yj) +
∑T

j=1 P (Zj = 1|Yj)

=

∑T
j=1 (1− z

(t)
j )

T
.
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∂Q

∂p1
=

∑T
j=1 P (Zj = 1, Gj = 1|Yj)

p1

−
∑T

j=1 P (Zj = 1, Gj = 2|Yj)

1− p1
= 0

⇒ p
(t)
1

=

∑T
j=1 P (Zj = 1, Gj = 1|Yj)∑T

j=1 P (Zj = 1, Gj = 1|Yj) +
∑T

j=1 P (Zj = 1, Gj = 2|Yj)

=

∑T
j=1 g

(t)
j z

(t)
j∑T

j=1 z
(t)
j

.

Since we do not have close form solutions for a, β0, βM , βGC , βX , b1,

c1, b2, c2, we can estimate them by numerical maximization of the Q

function using, for example, R optimization function optim().
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